Education:
Seoul National University, Dept. of Statistics (Ph.D.,1999. 02)
Professional Experience:
Korea Military Academy, Dept. of Mathematics, Full-time lector
Deagu Haany University, Dept. of Data Management, Professor
Univ. of Limerick (Ireland), Centre of Biostatistics, Visiting professor
Research Interests:
Multivariate survival analysis
Random-effect model inference
Deep-learning model development
There is no registered information.
Honors and Award:
Research award of The Society of Korean Medicine (2004)
Research award of The Korean Data & Information Science Society (2009)
Best research award in field of Statistics of The Korean Federation of Science and Technology Societies (2013)
Administrative and Editorial work:
Fellow of The Royal Statistical Society (2006 - present)
Co-Editor of the Korean Journal of Applied Statistics (2014 - 2016)
Associate Editor of Computational Statistics (2008-2012)
Associate Editor of Japanese Journal of Statistics and Data Science (2009-present)
English Book:
Ha, I.D., Jeong J.-H. and Lee, Y. (2017). Statistical Modelling of Survival Data with Random Effects. Springer
Development of software:
Ha, I. D., Noh, M. and Lee, Y. (2012). frailtyHL: frailty models via h-likelihood. R-package version 1.1.
Ha, I. D., Noh, M., Kim, J. and Lee, Y. (2019). frailtyHL: frailty models via h-likelihood. R-package version 2.3. http://cran.r-project.org/package=frailtyHL.
Selected International publications:
1. Ha, I.D., Lee, Y. and Song, J. (2001). Hierarchical likelihood approach for frailty models. Biometrika, 88, 233-243.
2. Ha, I.D., Lee, Y. and Song, J. (2002). Hierarchical likelihood approach for mixed linear models with censored data. Lifetime Data Analysis, 8, 163-176.
3. Ha, I.D., Park, T. and Lee, Y. (2003). Joint modelling of repeated measures and survival time data. Biometrical Journal, 45, 647-658.
4. Ha, I.D. and Lee, Y. (2003). Estimating frailty models via Poisson hierarchical generalized linear models. Journal of Computational and Graphical Statistics, 12, 663-681.
5. Ha, I. D. and Lee, Y. (2005). Comparison of hierarchical likelihood versus orthodox best linear unbiased predictor approaches for frailty models. Biometrika, 92, 717-723.
6. Ha, I.D. and Lee, Y. (2005). Multilevel Mixed Linear Models for Survival Data. Lifetime Data Analysis, 11, 131-142.
7. Noh, M., Ha, I.D. and Lee, Y.(2006). Dispersion frailty models and HGLMs. Statistics in Medicine, 25, 1341-1354.
8. Ha, I. D. (2006). Discussion of Lee and Nelder’s paper. Journal of Royal Statistical Society, C, 55, 176.
9. Lee, H.-S., Seo, J.-C. and Ha, I.D. (2006). Acupuncture for smoking cessation?: commentary. Yonsei Medical Journal, 47, 155-156.
10. Ha, I.D., Lee, Y. and Pawitan, Y. (2007). Genetic mixed liner models for twin survival data. Behavior Genetics, 37, 621-630.
11. Ha, I.D., Lee, Y. and MacKenzie, G. (2007). Model selection for multi-component frailty models. Statistics in Medicine, 26, 4790-4807.
12. Ha, I. D. (2007). Discussion of Zeng and Lin’s paper. Journal of Royal Statistical Society, B, 69, 549-550.
13. Ha, I. D., Noh, M. and Lee, Y. (2010). Bias reduction of likelihood estimators in semiparametric frailty models. Scandinavian Journal of Statistics, 37, 307-320.
14. Ha, I. D. and MacKenzie, G. (2010). Robust frailty modelling using non-proportional hazards models. Statistical Modelling, 10, 315-332.
15. Lee, Y. and Ha, I. D. (2010). Orthodox BLUP versus h-likelihood methods for inferences about random effects in Tweedie mixed models. Statistics and Computing, 20, 295-303.
16. Ha, I. D., Sylvester, R., Legrand, C. and MacKenzie, G. (2011). Frailty modelling for survival data from multi-centre clinical trial. Statistics in Medicine, 30, 2144-2159.
17. Ha, I. D., Noh, M. and Lee, Y. (2012). frailtyHL: A package for fitting frailty models with h-likelihood. R Journal, 4, 28-37.
18. Ha, I. D., Pan, J., Oh, S. and Lee, Y. (2014). Variable selection in general frailty models using penalized h-likelihood. Journal of Computational and Graphical Statistics, 23, 1044-1060.
19. Ha, I. D., Lee, M., Oh, S., Jeong, J.-H., Sylvester, R. and Lee, Y. (2014). Variable selection in subdistribution hazard frailty models with competing risks data. Statistics in Medicine, 33, 4590-4604.
20. Paik, M. C., Lee, Y. and Ha, I. D. (2015). Frequentist inference on random effects based on summarizability. Statistica Sinica, 25, 1107-1132.
21. Ha, I. D., Vaida, F. and Lee, Y. (2016). Interval estimation of random effects in proportional hazards models with frailties. Statistical Methods in Medical Research. 25, 936-953.
22. Ha, I. D., Christian, N. J., Jeong, J.-H., Park, J. and Lee, Y. (2016). Analysis of clustered competing risks data using subdistribution hazard models with multivariate frailties. Statistical Methods in Medical Research, 25, 2488-2505.
23. Christian, N. J., Ha, I. D. and Jeong, J. (2016). Hierarchical likelihood inference on clustered competing risks data. Statistics in Medicine, 35, 251-267.
24. Lee, M., Ha, I. D. and Lee, Y. (2017). Frailty modeling for clustered competing risks data with missing cause of failure. Statistical Methods in Medical Research, 26, 356?373
25. Ha, I. D., Noh, M. and Lee, Y. (2017). H-likelihood approach for joint modelling of longitudinal outcomes and time-to-event data. Biometrical Journal, 59, 1122-1143.
26. Hong, S.W., Suh, Y.S., Kim,D.H., Kim,M.K., Kim,H.S., Park,K.S., Hwang, J. S. Shin,S.J., Cho,C.H., Jung, S.W., Ha, I. D. and Kwon, Y.K. (2018). Manifestations of Sasang typology according to common chronic diseases in Koreans. Evidence-Based Complementary and Alternative Medicine, 1-8.
27. Park, E. and Ha, I. D. (2019). Penalized variable selection for accelerated failure time models with random effects. Statistics in Medicine, 38, 878-892.
28. Huang, R., Xiang, L. Ha,I .D. (2019). Frailty proportional mean residual life regression for clustered survival data: A hierarchical quasi-likelihood method. Statistics in Medicine. 38, 4854-4870.
29. Ha, I .D., Kim,J.-M. and Emura,T. (2019) Profile likelihood approaches for semiparametric copula and frailty models for clustered survival data, Journal of Applied Statistics, 46, 2553-2571.
30. Emura,T. Shih, J.-H. Ha, I .D. and Wilke, R.F. (2020). Comparison of the marginal hazard model and the sub-distribution hazard model for competing risks under an assumed copula, Statistical Methods in Medical Research, 29, 2307-2327.
31. Ha, I. D., Xiang, L., Peng, M. Jeong, J.-H. and Lee, Y. (2020). Frailty modelling approaches for semi-competing risks data. Lifetime Data Analysis, 26, 109-133.
32. Kim, J.M., Li, C. and Ha, I. D. (2020). Machine learning techniques applied to US army and navy data. International Journal of Productivity and Quality Management, 29, 149-166.
33. Chee1, C.-S. Ha ,I.D., Seo,B. and Lee,Y. (2021). Semiparametric estimation for nonparametric frailty models using nonparametric maximum likelihood approach, Statistical Methods in Medical Research, 30, 2485-2502.
34. Rakhmawati1, T.W., Ha,I.D., Lee,H. and Lee,Y. (2021). Penalized variable selection for cause-specific hazard frailty models with clustered competing-risks data, Statistics in Medicine, 40, 6541-6557.
35. Ha, I.D. and Lee,Y. (2021). A review of h-likelihood for survival analysis, Japanese Journal of Statistics and Data Science, 4, 1157-1178.
36. Hao, L., Kim, J., Kwon, S. and Ha, I.D. (2021). Deep learning-based survival analysis for high-dimensional survival data. Mathematics, 9, 1244, 359?366
37. Kwon, S. Ha, I.D. , Shih, J.-H. and Emura,T. (2022). Flexible parametric copula modeling approaches for clustered survival data, Pharmaceutical Statistics, 21, 69-88.
38. Kim, J.-K. and Ha, I.D. (2022) Deep learning-based residual control chart for count data, Quality Engineering, 34, 370-381.
39. Jaouimaa, F.-Z., Ha, I.D. and Burke, K. (2023). Penalized variable selection in multi-parameter regression survival modeling, Statistical Methods in Medical Research, 32, 2455-2471.
40. Kim, J., Ha, I.D. , Kwon, S., Jang, I. and Na, M.-H. (2023). A smart farm DNN survival model considering tomato farm effect, Agriculture, 13, 1782.
41. Kim, J., Jeong, B., Ha, I.D. et al. (2024). Bias reduction for semi-competing risks frailty model with rare events: application to a chronic kidney disease cohort study in South Korea, Lifetime Data Analysis. 30, 310-326.
42. Jaouimaa, F.-Z., Ha, I.D. and Burke, K. (2024). Multi-parameter regression survival modelling with random effects, Statistical Modelling, 24, 245-265.
43. Lin, H., Ha, I.D. , Jeong, J.-H. and Lee, Y. (2024). Joint AFT random-effect modeling approach for clustered competing-risks data, Journal of Statistical Computation and Simulation. 94, 2114-2142.
44. Seo, B., Ha, I.D. (2024). Semiparametric accelerated failure time models under unspecified random effect distributions, Computational Statistics and Data Analysis, 195, 1-19.
45. Ha, I.D. (2024). A Study on the Relationship Between Deep Learning and Statistical Models, Measurement: Interdisciplinary Research and Perspectives, 22, 188-199.
46. Kim, J.-M., Kim, S. and Ha, I.D. (2024). Copula deep learning control chart for multivariate zero inflated count response variables, Statistics, Online published.
47. Lee, H., Ha, I.D. , Hwang, C. and Lee, Y. (2023). Subject-specific deep neural networks for count data with high-cardinality categorical features. arXiv:2310.11654v1, https://doi.org/10.48550/arXiv.2310.11654
48. Lee, H., Ha, I.D. , Hwang, C. and Lee, Y. (2023). Deep neural networks for semiparametric frailty models via h-likelihood. arXiv:2307.06581v1, https://doi.org/10.48550/arXiv.2307.06581
There is no registered information.